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A method for adaptive refinement of a Cartesian mesh for the solution
of the steady Euler equations is presented. The algorithm creates an
initial uniform mesh and cuts the body out of that mesh, The mesh is
then refined based on body curvature. Next, the solution is canverged
to a steady state using a linear reconstruction and Roe’s approximate
Riemann solver. Solution-adaptive refinement of the mesh is then
applied to resolve high-gradient regions of the flow. The numerical
results presented show the flexibility of this approach and the accuracy
attainable by solution-based refinement. € 1993 Academic Press. Inc.

L INTRODUCTION

In the past several years, unstructured mesh methods for
fluid dynamics have become more and more prevalent, as a
way of surmounting some of the difficulties of generating
body-fitted meshes about arbitrary bodies {1-4]. Flow-
fields with muitiple bodies are particularly difficult to
generate structyred meshes for, and multi-block methods
[5] or patched-mesh methods [6] must be implemented in
these cases if structured meshes are to be used.

Even unstructured mesh generation is not simple for com-
plex conligurations, however. Advancing front methods [2]
must be carefuily implemented to avoid high aspect-ratio or
highly skewed cells: Delaunay methods [3,4] typically
require the generation of a cloud of points to triangulate,
and special steps must be taken to avoid the breaking of
boundary laces,

A very simple mesh generation technique is to “cut” the
bodies in the flow out of a Cartesian mesh. Indeed, this
technique is commonly used for potential flow calculations
[7] Advantages ol using Cartesian meshes for Euler
solvers, besides increased case of mesh generation, include
simpler lux formulations and simplilications in the data
structure. In addition, Cartesian cells lead to fortuitous
cancellation ol truncation crrors not occurring on less
regular meshes. Two difficulties that arisc in developing an
Euler solver for a Cartesian mesh are:

1. poor resolution of geomeltric features such as leading
and trailing edges, and
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2. the introduction of cut cells that are a small fraction
of the size of uncut cells.

Euler solvers based on central-differencing on Cartesian
meshes have been developed by Clarke ef al. [8] and
Epstein et al. [9]. In the work of Clarke et al,, resolution of
leading and trailing edges was achieved simply by clustering
the mesh lines near the points of interest; cut cells were
handled by merging them with neighboring uncut cells. In
the work ol Epstein ¢ af., resolution was achicved by local
mesh refinement; cut cells were handled by a non-conser-
vative extrapolation procedure. An upwind-differencing
method on an adaptively refined Cartesian mesh has been
developed by Berger and LeVeque [10], for unsteady flows.
In their work, the large time-step method of Leveque [i1]
was used to help remove the numerical stiffness due to small
cut cells.

In the work presented in this paper, resolution is achieved
by use of adaptive refinement; cut cells are handled by a
reconstruction method for general unstructured meshes
coupled with local time-stepping. The work consists of a
mesh generation based on a Cartesian mesh with geometry-
based refinement {12], and a flow solver based on the
MUSCL concept [ 13], with a linear reconstruction techni-
que [ 14] and Roe’s approximate Riemann solver [15]. In
addition, solution-adaptive refinement of the mesh is used
to gain resolution in high-gradient regions of the flow
[16, 17]. Each clement of the mesh-generation technique
and the llow solver is described in the following text, along
with the data structure used. Results for a collection of test
cases are presented and discussed.

2. GENERATION OF FTIE MESEL AND
DATA STRUCTURE

2.1, Data Structure

The basic data structure used is a hierarchical cell-based -
quadtree structure—"parent™ cells are refined by division
into four “children” cells. This concept is iliustrated in
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Fig. 1. Each cell has a pointer to its parent cell (if one exists)
and to its four children celis (if they exist). The cells farthest
down the hierarchy, that is, the ones with no children, are
the cells on which the calculation takes place.

This tree structure contains all the connectivity informa-
tion necessary to carry out the flow calculations; no other
connectivity information is stored. For instance, finding a
neighbor cell requires, in the best case, simply querying the
parent cell for the location of another of its children. In the
worst case, the tree must be traversed all the way to its root.
More generally, the expected number of levels of the tree
that must be traversed to find neighbor asymptotes to
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i.e., the neighboring cell is typically a grandchild of the
current cell’s grandparent.

The decision of which information to store and which to
compute each time it is needed, is based on a trade-off
between memory usage and computational speed.
Computing neighboring cells, for instance, takes 25% of the
compute-time if this information is not stored; storing it,
however, requires eight integers. Computing the level of a
cell in the tree, on the other hand, takes 15% of the
compute-time if it is not stored; storing it requires only one
integer. Based on these trade-offs, celi-level information is
stored, whereas cell-neighbor information is computed each
time it is needed. The integer variables stored per cell are
thus:

« 5 words—Pointers to one parent and four children cells

e 1 word—Cell type information (whether the cell is
inside or outside the flow domain, whether it crosses a
boundary, etc.)

¢ 1 word—Cell level (level of the tree at which the celi
resides)

Parent Cell
Cell Lavel n

Children Ceils
Call Level n+1

FIG. 1. Parent/children relationship,

» 2 words—OQOther temporary values—
for a total of nine words. Real variable stored per cell are:

¢ 4 words—Conserved variables

» 4 words—Temporary conserved variables for time-
stepping scheme

» 4 words—Residuals

» 1 word—Time step

« 8 words-—Gradients in X and Y directions
¢ 1 word—Limiter value for frozen limiter

» 3 words—Celi centroid and area

for a total of 25 words. This is not the minimal amount of
storage that could be achieved, but is a practical balance of
memory and compute-time needs. The amount of memory
required for connectivity information (ie., the integer
variables) is quite small; nine words are stored that would
not be necessary in a structured-grid code. The compute-
time overhead is similarly small; 25 % of the compute time
is spent on tree-traversal, so that the code is approximately
25% slower than an unstructured-grid code with full
connectivity information stored. A FORTRAN version of
the code, with a five-stage explicit time-stepping scheme,
requires 0.7 ms per ileration per cell on an [BM RS6000.
A somewhat more efficient C version of the code requires
0.3 ms per iteration per cell.

The minimal connectivity discussed'above has an added
advantage; refining or coarsening a cell (i.e., spawning four
children cells or removing four children cells) reduces
primarily to a trivial change of the cell-based quadtree
structure,

2.2. Generation of an Initial Mesh

The generation of the initial mesh begins with the crea-
tion of the “root™ cell. Its size is determined from the size of
the flow field and by what the user determines to be the
coarsest acceptable mesh for that flow field. Then cells
without children, initially just the root cell, are refined until
the mesh reaches the coarsest acceptable mesh. This mesh
serves as the initial mesh for cases in which no body is
cut out of the grid. The procedure for computing the
intersections of the body with the mesh depends upon how
the body has been defined.

For a body defined by a piecewise analytic function y(x),
with the inverse function x(y) also known, a node of the
Cartesian mesh can be classified as inside or outside the
body immediately, by determining whether the x = constant
and v = constant lines through the node intersect the body
an even or odd number of times between the node and the
outer boundary. For a body defined by a piecewise analytic
function y(x), with the inverse function not known, the
intersections of the line x = constant with the body are
known immediately; a search procedure must be set up to
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determine the intersections in the x-direction. For a body
defined simply by a set of data points, a search procedure
must be carried out in both the x- and p-directions to find
the intersections. For bodies defined in this manner, a spline
(C° at trailing-edges, C? elsewhere) is fit through the points
defining the body. The spline-fit of the body data points was
found to be necessary to obtain smooth flow solutions.

Each cell in the Cartesian mesh is classified as to whether
it is inside the body, cut by the body, outside of the body,
or in the cuter boundary based on the information found at
the corners of that cell.

With this approach, very small cells can, and often do,
appear in the mesh. The only limit placed on the cell size is
that a node that is within a very small (machine-zero level)
tolerance of a body is considered on that body, which in
effect “pulls” the body out to the node. This avoids the
problems associated with cells whose areas are on the order
of machine accuracy. The remaining cell areas, in a typical
case, vary as much as six orders of magnitude from one cell
to its immediate neighbor. Due to the reconstruction proce-
dure and the time-stepping procedure, these small cells do
not degrade the accuracy or stability of the scheme. These
small cells also seem to have little effect on the rate of
convergence. Indeed, the supersonic channel flow case
shown in the results section has the smallest cut cells, and
yet it converges the most rapidly.

2.3. Geometry-Based Mesh Refinement

Geometry-based mesh refinement [ 127 is the next step in
creating a suitable mesh. Once a suitable initial Cartesian
mesh has been generated and the cut locations determined,
a combination of cut-cell refinement and curvature refine-
ment is applied to the mesh.

In cut-cell refinement, each cell cut by a body is refined,
along with its three nearest neighbors. Refining neighbors of
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FIG. 2. Example mesh. Double ellipse grid plot.

cut cells ensures a smoother transition to fine cells on the
body from the coarser outer flow cells. Refinement of cut
cells is applied successively until the mesh size on the body
is brought to a user-specified level.

Once the desired cut-cell refinement is completed, cur-
vature refinement is applied to the mesh. The slopes of the
body faces on two consecutive cut cells are compared. If the
difference in slopes is above a threshold value, both cells,
and their nearest neighbors, are refined. The actual check
used to flag cells for curvature refinement is given by

()., (...

with special care taken for faces with 4X small. An example
mesh generated by the above procedures is shown in Fig, 2.

>0.05 (1)

2.4, Solution-Based Mesh Refinement

An adaptive mesh may be refined or coarsened based on
the characteristics of the flow about the body. Refinement
takes place only after a solution is sufficiently converged. At
that point, cells are flagged for refinement, based on the dif-
ference (undivided) of the total velocity between cells. If the
total velocity difference is above a user-specified fraction
{typically 5%) of the maximum total velocity difference,
then the two cells sharing that face are flagged for refine-
ment. For cach cell that is flagged, four children cells are
added to the quadtree data structure, one level farther down
the hierarchy than their parent cell.

s
s =

8 n 8}

FIG. 3. *“Undesirable” mesh features.



ADAPTIVE CARTESIAN MESH METHOD 59

2.5. Mesh “Smoothing”

The mesh resulting from the above procedure could have
certain “undesirable features.” Some are undesirable in that
allowing them would complicate the data structure; others
are undesirable in that computational experience shows
that they may degrade the solution somewhat in their
vicinity. The cight features that are currently labelled
“undesirable” are described below, and depicted in Fig. 3.

1. Cell level differences greater than 1 between two
neighboring cells

2. Cell level differences greater than 0 normal to body-
cut cells

3. Cell level differences greater than 0 through outer
flow boundaries

4. Cell level differences greater than 0 between three-
sided cells and their neighbors

5. “Holes” in the mesh
6. More than two cuts on a cell

7. Ceil level differences greater than 0 on trailing edge of
body

8. Bodies too close, only iwo cells apart.

When an undesirable feature is found, the mesh is
“smoothed” to eliminate it, by refining appropriate cells
until the feature no longer exists. This is a recursive proce-
dure, that converges to a mesh with no undesirable features.

3. FLOW SOLVER

The flow solver described here consists of three primary
components: a linear reconstruction method for obtaining
accurate, limited values of the flow variables at face mid-
points; an approximate Riemann solver for computing the
flux through cell-faces; and a muiti-stage time-stepping
scheme for advancing the solution to a steady state. The
individual components of these procedures, along with the
procedures used at boundaries, are described below.

3.1. Reconstruction Procedure

In order to evaluate the flux through a face, flow quan-
tities are required at both sides of the face. To achieve
higher-order accuracy, solution-gradient information must
be used. A lincar reconstruction method [1] is used to
determine a second-order approximation to the state at the
face midpoint, based on the cells in the neighborhood of the
face. It relies on a suitable path integral about the cell of
interest, with the gradient of a quantity W, in a cell being
determined by

1
VWk=—_ Wkﬁ dl,

2 Vo

(2)

where 4, is the area enclosed by the path of integration, €.
Here, W, represents the quantity being reconstructed; in
this work, the primitive variables W =(p, u, v, p)T are
reconstructed,

The path for the integration is constructed by connecting
the centroids of neighboring cells. Away from cut cells or
cell-level differences, the eight immediate neighbors of a cell
are used. Near a body, as few as four cells are used to
construct the path. The path is determined by finding
the nearest neighbor in each of eight directions (north,
northeast, east, southeast, south, southwest, west, and
northwest). If two neighbors are found in one direction (as
can occur when the neighbor is at a different level of the
tree), both are used. If no valid neighbor is found, the cell
itself is used as the neighbor in that direction.

These “altered” paths lead to less accurate approxima-
tions to the gradient than those calculated in regions away
from cut cells or cell-level differences. The reconstruction
scheme described below, however, retains the property of
exact reconstruction of a linear function, even in regions
where altered paths are used, as long as a minimum of three
non-colinear cell-centers are used to form the path. Some
examples of the paths are shown in Fig. 4, with the X
denoting the cell for which the gradient is being calculated.

Once the cells in the path are determined, the path integral
is carried out numerically. In general, the area inside the
path is calculated by summing the areas of the triangles
formed by connecting the centroids in the path to the
centroid of the cell for which the gradient is being
calculated.

Once the gradient of W is known in each cell, the value
of W, can be found anywhere in the cell from

Welx, ) =W, +VW, -dr, (3)

where W7 is the value of W, at the cell centroid, and dr is
defined as

dr .= x— x°%, dr,=y— " {4a)

Her
1

FIG. 4. Normal and special paths.
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For example, the values at the face midpoints of an uncut
cell are simply

Ay
Wiee = Wi+ =Y, W, (5a)
right ¢ AX e
Wt =Wi+ 5 V. W, {5b)
A N
Wieem = W = Y, W, (5¢)
4
W= Wi =5V W, (5d)

32. Limiting

If the fuil gradient were used in reconstructing the values
at face midpoints, the computed values could fall outside the
bounds of the data used in the path integral. To avoid this,
the computed gradients are /imited; that is, the primitive
variables W = (p, u, v, p)T are reconstructed via

Wix, y)=W+ ¢ VW .dr, (6)
where ¢ is a limiter, with a value between zero and one. In
regions where ¢ = 1, a linear reconstruction is being used,
and the truncation error is @(A?); in regions where ¢ =0, a
piecewise constant reconstruction is being used and the
truncation error is (/) [ 1]. The limiter ¢ is defined as

1

. (W —max,.. (W, )|
. min, s
=min [ Wi — max e Wil
. (I ch*miﬂpam(Wk)l)
min, ~ -
W — min g, (W)

(7)

which is a diffusive limiter of the minmod variety [187]. The
minimum and maximum over the path are found by
examining the values of W used in the path integration; the
minimum and maximum over the cell are found by using the
gradient to reconstruct W, at the corners of the cell. Thus,
the limiter acts to ensure that the values of W, at the nodes
of the cell for which the gradient is being calculated are
bounded by the values of W/, that are used in calculating the
gradient. Using a singie limiter for the gradient of the vector
W was found to give superior convergence. In standard
MUSCL-type schemes [13], a separate limiter is typically
used for each variable and for each mesh direction, resulting
in eight limiters for each ceil.

Unfortunately, limiting can seriously hamper the con-
vergence to 4 steady state, with the non-linearity of the
scheme resulting in limit cycles. To combat this problem,
the limiter values are “frozen” after a certain point in the
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FIG. 5. Limiter values—transonic airfoil. NACA 0012; values of the
limiter ¢.

convergence, using previously stored values of the limiter
rather than recomputing them at each time step. Freezing
the limiters allows the residvals to converge to machine
ZEero.

Typical values of the limiter are shown in Fig. 5, in which
the ¢{x, ») 1s plotted for a transonic airfoil case. As can
be seen, a lincar reconstruction (¢ =1} is used nearly
everywhere. In the immediate vicinity of the shocks and the
wake, the limiter reduces the order of accuracy of the
scheme. The percentage of cells in which the limiter is less
than one is extremely small, however. The limiter values on
the body are one, allowing the full accuracy of the scheme
there. The order of the scheme, in a case in which the limiter
is everywhere equal to one (an airfoil at subcritical speed),
is shown in Fig. 6. This figure is a log—log plot of the drag
{which should be zero) as a function of the size of an uncut
cell of the mesh. The slope of this curve, for all but the very
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%13 SUUUURIS SOSRSSONN UOSRSIO: USSR SR
Logjg {Drag) '
- I :
57 —1.25 —0.75 —0.25
Logig (MeshSize)

FIG. 6. Convergence rate of drag as a function of mesh size.
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coarsest mesh (which has only eight points on the airfoil ), is
two, demonstrating the second-order global accuracy of the
scheme.

1.3. Approximate Riemann Solver

The finite-volume form of the Euler equations can be
written as

MLy Fay—cax,

dt (&)

faces

where 4 is the area of that cell, Ax and A4y are the changes
of x and y along a face (defined so that the integral is carried
out in a counterclockwise sense), and U, F, and G are
defined as

I
pu
po
pE

(9a)

pu

pu’ +p
puv
pul

(9b)

pu
pou

pv’+p
pvH

(9c)

Defining the face length and the normal and tangential
velocities as

As=/(dx)* + (Ay)*

(udy—v4dx)
U, =———-

(10)

(11a}

" As
{uAx +v Ay)
= ——r 11b
" ds (11b)

the flux through a face may be written as

pur

Ay
u,u+ p—
pu PAs
Ax

punv_pz

(Fdy—G 4x)= As=® As. {12)

pu, H

The flux through a face is a function of the values at the

face midpoint, given by the reconstruction in the cells to the
“left” and “right” of the face. Using Roe’s approximate
Riemann soiver, this flux function is

DU, Ug)=3[®(U, )+ ®(Ug)]

4
—1 2 ld* 4V, R, (13)
k=1
with
g,—¢
a= (14a)
i,+é
Ap — gé Au,
242
p du,
é
AV = (14b)
4p
Ap ——
é
Ap + pé Au,
262
1 0 1 1
Ay | Ax . R 1%
¢ CASCAS tH_cAs
R=| . _4x 4y . . _Ax {(14c)
v+CAs CAS L U—CA—S
22 | a2
Hei,é 4,¢ ° ;“” H+i,¢é
and
P=~/PLPr (15a)
G= Priug++/PrUg (15b)
' VPLtN PR
ﬁ=‘\/pLUL+ PrVr (15¢)
PrLr~/Pr
o SeLH g H
A= Pt/ Prtip (15d)

N/IEN

where & 4,, and #, are calculated directly from 4, 4, ¢, and
H. The flux difference terms (the summation in Eq. (13})
previde the upwind character which stabilizes the scheme.
To prevent expansion shocks, an entropy fix is imposed
[19]. A smoothed value, |d%'|*, is defined to replace |4'%|
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for the two acoustic waves (k=1,k=4). For those two
waves,

. . 1

1a®l, a1 2 5 6a%)
|é[k)¥*___

Alky2

(@) 15,00 Id{kilélga(k)

da*t 4 2

(16)

6a'®) = max(44a®,0),  Aa® =gl —a.

For each cell, the face fluxes, calculated as above, are
summed to give the residual for the cell,

Res{U)= 1 Y @45

faces

(17}

These residuals are then integrated in time, as described
below.

3.4. Time-Stepping Scheme

The time-stepping scheme used is one of the optimally
smoothing multi-stage schemes developed by Tai [20, 21].
The general m-stage scheme is defined as

U0 =ur
UB=U® 4q, 4t Res(U*= 1), k=1,m (18)
Un+i =U(m)_

The five-stage scheme which gives optimal damping of
Fourier modes in the range 7/2 <k 4x <n has multi-stage
coefficients

o, = 0.0695
o, =0.1602
o, = 0.2898 (19)
2q = 0.5060
%5 = 1.0000

and CFL number 1.1508,

Local time-stepping is used and, indeed, is necessary. The
meshes generated have extremely large differences in area
from cell to cell, due to the cut cells. A representative
convergence history is shown in Fig. 7.

1.0

residual spikes due to
solution refinement

—1.0

Logy{residual)

—3.0+
-5.0+ \
=7.0 T T T —1

C. 4000, 8000. 12000.

Heration

FIG. 7. Representative residual convergence history.

3.5. Boundary Procedures

Boundary procedures are handied by the approximate
Riemann solver. For flow-through boundaries, free-stream
conditions are specified in “ghost cells” just outside the com-
putational domain, and the Riemann-problem solution at
these boundary faces gives the boundary flux. For solid-wall
boundaries, the mass and energy flux are set to zero, and
only the pressure terms are kept in the momentum fluxes.
The pressure used in the wall flux is the value given at the
center of the wall face by the reconstruction procedure. This
corresponds to a linear extrapolation of the pressure to the
wall.

4. POST-PROCESSING

Post-processing requires transferring the known cell-
centered values to nodal values for plotting as accurately as
possible. To do this, the limited cell gradients are used to
extrapolate to each cell’s nodes as shown in Fig. 8.

The function as reconstructed at the nodes is multi-
valued; there is one value resulting from the representation
in each cell sharing that node. These multiple values at each
node are averaged to yield a single accurate, bounded value
there.

FIG. 8. Obtaining post-processed nodal values.
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5. CURRENT RESULTS

The method described above has been tested on several
internal and external flows. The cases were chosen so as to
show the flexibility of the Cartesian mesh approach and
the fidelity of results available by use of solution-based
refinement.

5.1. Transonic NACA Airfoil

The steady-state flow was computed about a NACA 0012
airfoil at A, =0.85 and «=1° For these conditions,
shocks exist on the upper and lower surfaces of the airfoil.

The outer boundary of the mesh was set at a 2048-chord
radius. This virtually eliminated the need for a vortex
boundary condition; simply specifying the free-stream state
at the outer boundary faces proved adequate. The initial
mesh was refined based on curvature, to resolve the leading
and trailing edge. Three levels of solution-based refinement
were done, as well,

As can be seen in Fig. 9 and 10, both shocks, as well as the
wake, are well resolved. The pressure coeflicient, plotted in
Fig. 11, results in a lift of 0.3670 and a drag of 0.0581.

To show the effect of the outer boundary conditions on
the solution, this case was run for outer boundaries ranging
from a four-chord to a 2048-chord radius. Geometry-based
refinement was carried out so as to ensure an equivalent
mesh in the vicinity of the airfoil for each case. Three levels
of solution-based refinement were also done for each case.
As can be seen in Fig. 12, this wide range of outer boundary
radius resulted in only a small change in the total number of
computational cells. Even though the crudest possible outer
boundary condition (free-stream flow) was enforced, the lift
and drag are converged by the 512 chord case. Thus, by use
of mesh refinement, simple outer boundary conditions may
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FIG. 9. NACA 0012 mesh: 9609 cells, level 4 mesh, lift =0.3670,
drag =0.0581.
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FIG. 10. NACA 0012, Mach number line contours: 9609 cells, level 4
mesh, {ift =0.3670, drag = 0.0581.

be enforced, at a radius far from the body, at very little
computational cost.

5.2. “Subsonic’’ Three-Element Airfoil

For this case, M _, =02 and « = 0°. Portions of the mesh
are shown in Fig. 13, 14, and 15. As can be seen, the
geometry-adaptive refinement gives sufficient resolution of
leading and trailing edges. Contours of Mach number are
shown in Figs. 16, 17, and 18. Due to the high effective
camber caused by the flaps, the flow actually expands to
supersonic speed about the leading edge, and a weak shock
is present. The Mach number and pressure coefficient
distributions on the surface are shown in Figs, 19 and 20.
Despite large variations in cell size on the body (the smallest
cut cell is a factor 10° smaller than its uncut neighbor) the
solution is smooth. The total pressure loss, 1 — py/p,_, is

—-1.20

0.33

0.67 1.00

X

FIG. 11. NACA 0012, pressure coefficient cross-sections, Cp on the
body: 9609 cells, level 4 mesh, lift =0.3670, drag =0.0581.
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FIG. 16. Three-element airfoil Mach number contours.
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FIG, 18, Three-element airfoil Mach number cantours {(detail ).

shown in Fig. 21. There is some total pressure loss on the
upper surface of the main element (=0.5%), due to the
shock at the leading-edge. On the lower surface of the main
element, the loss is less than 0.1 %. There are some spikes in
the losses at leading and trailing edges of each element. The
lift computed for the system is C,=3.7842; the drag
computed is C,;=0.0159.

5.3. Supersonic Double Ellipse

For this case, M =8.15 and «=30° The mesh was
refined four times based on the solution; the resulting mesh
is shown in Fig. 22. The refined regions correspond to the
nose, the bow shock, and the canopy shock. The Mach
number and pressure contours are shown in Figs. 23 and 24,
respectively. The shocks and the expansion about the nose
are all well resolved. Finally, the pressure coefficient on the

Q.00

0.00 1.20

FIG. 19. Three-element airfoil Mach number cross sections.
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—6.7

5.0 | T T T
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FIG. 20. Three-clement airfoil, pressure coefficient cross-sections, C,,
on the surface; lift = 3.7842, drag = 0.0159.

body is plotted in Fig. 25. Despite the presence of small cut
cells on the body, the pressure distribution is very smooth
and the canopy shock is captured cleanly.

5.4. Supersonic Channel Flow

In this case, the steady-state flow was computed in a
channel with a 15° compression corner, followed by a 15°
expansion corner. The free-stream Mach number is
M, =20. There is an attached shock at the compression
corner, which reflects from the top wall, forming a small
Mach stern. The shock reflects from the bottom wall as well,
before exiting the channel. The expansion corner acts to
weaken the reflected shock. There is also a slip line,
emanating from the triple point near the upper wall.

The Mach number contours and mesh are shown in
Fig. 26. A blowup of the Mach stem is shown in Figs. 27 and
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FIG. 21. Three-clement airfoil, total pressure loss cross-sections,
1 — py/pq_ on the surface.
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3.00 Frmin 0.67
Fst 0.70
Finc 0.10
T Fmax 3.40
'.2.00-J
Y
1.00
0.00
0.00

FIG. 29, Fifteen degree wedge pressure line contours.

3.50
Upper Wall
2.504
P Lower Wall
Lower Wall
1.504
Freestream
0.50 T T T —T L
0.00 1.00 X 2.00 3.00

FIG. 30. Fifteen degree wedge pressure cross sections.

28. The shear that emanates from the triple ‘point of the
Mach stem is carried cleanly out through the flow, although
somewhat weakened by the expansion. The pressure con-
tours plotted in Fig. 29 pass smoothly through the shear, as
they should. The pressure on the wall is shown in Fig. 30.
Note that the pressure is constant on the incline of the ramp.
Cell areas on the incline vary as much as six orders of
magnitude from cell to cell without having a detrimental
effect on the solution.

6. CONCLUDING REMARKS

An adaptive Cartesian mesh algorithm has been
developed and has been used successfully to obtain steady-
state sclutions of the Euler equations for a variety of inter-
nal and external flows. Test cases included a transonic
airfoil, a three-element airfoil, a double eilipse, and a
channel flow. For airfoil cases, the outer boundary can be
placed arbitrarily far from the airfoil without significantly
increasing the number of cells, thus eliminating the need for
sophisticated outer boundary conditions. Both geometry-
and solution-based refinement effectively enhance resolu-
tion of regions of high body curvature and large flow
gradients. The reconstruction method, coupled with local
time stepping, eliminate the problems typically associated
with the small cut cells caused by cutting the body from the
Cartesian mesh.

Extension of the inviscid algorithm to three dimensions
appears promising. The appropriate data structure in the
three-dimensional case is an octree, with each parent cell
being divided into eight children celis. Extension of the
two-dimensional algorithm to viscous-flow cases is less
straightforward, but no less promising. Because of the
anisotropy of high-Reynolds-number flow, the isotropic

‘refinement scheme of the current algorithm (splitting cach

parent cell along two Cartesian directions, giving four
children cells) must be replaced by a direction refinement.
This suggests the use of a binary-tree data structure, with
each parent cell being divided into two children cells. In
addition, cells near a boundary should be cut, not along a
Cartesian direction, but along a body-aligned direction. If
an appropriate anisotropic grid-refinement technique such
as this can be developed, the solution technique described
in this paper can be extended fairly easily to 2 powerful
technique for high-Reynolds-number flows.
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